THERMOCAPILLARY CONVECTION IN A LAYER OF LIQUID

S. 8. Brodskii and A. M. Golovin UDC 532.63;536.252

Convection in a slag at the surface of liquid metal and convection in a liquid metal without slag are
described respectively by a model of convection in a liquid layer with a free surface and by a model of con-
vection at the surface of a solid, The conditions for convection in a liquid and at the surface of a solid pro-
duced by the thermocapillary effect have been considered earlier in [1], and the combined gravitational and
thermocapillary effect has been considered in [2].

The liquid layer is assumed sufficiently thin to make the Archimedes force in the equations of motion
negligible but sufficiently thick to allow thermocapillary convection to occur at moderate temperature
gradients with the viscosity assumed not to vary with temperature. The velocity field in a convection cell
of slag or metal is calculated here and the results are then applied to the determination of diffusive flow
across the surface of the liquid.

1. Fundamental Equations. We consider a liquid layer confined between the planes z = 0 {upper sur-
face) and z = h (lower surface). The liquid in the layer is assumed at rest. Under the condition of a uniform
temperature over the boundary surfaces the temperature profile across the liquid will be linear; T = Ty + Az.

We introduce the following dimensionless variables:

z=hE y=hy, z=5hE ' =(H"/v)i
ve=(/Ru, vy={/h)v, v,=W/h)w
p=p /W0, T="T,+ AR (L +0) .

Here vy is the kinematic viscosity of the liquid, p is its density, p is the pressure, and t' is the time.

The equations of motion for an incompressible viscous liquid and the equation of convective heat trans-
fer, both in dimensionless form, are

%‘%+(Vv)v=—VH+Av, divv =0

Do —ai—w  (p=), (1.1)

Here y is the thermal diffusivity., Thermocapillary convection occurs as a result of the fact that the
coefficient of surface tension varies with temperature and, therefore, occurs when the temperature at the
boundary surfaces is not distributed uniformly.

When the temperature gradient exceeds a certain critical value, then, as will be shown subsequently,
a uniform temperature distribution is unstable. The motion of the liquid, which begins at small deviations
from a uniform temperature distribution, causes this deviation to increase and a nonuniform temperature
distribution to be established over the surfaces. Moreover, the entire liquid layer will break down into
cells, just as in the case of gravitational convection [3]. The liquid rises along the axis of each cell and
drops along the edges, or vice-versa.
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It is well known [4, 5] that a change in the surface tension ¢ along a boundary surface produces tan-
gential forces whose magnitude per unit surface areais Vo. Assuming that the temperature variation along
the z =0 surface is small, we may let Vo =—y VT (y = const).

The condition of impermeability for the surface and the condition of continuity for the tangential com-~
ponents of the stress tensor signify that at z =0

b, 9T o, aT
v,=0, w5 =73, Ba =Ta =0, (1.2)
From the continuity equations and (1.2) follows
8 8 5%
t (o o) T Hugg =0

or, in dimensionless form with £ =0,

w=0, Gap-—Clptmle (c=1). 1.3)

A heat transfer is assumed to occur at the upper surface of the liquid with the surrounding medium
which yields a corresponding boundary condition: ’

wdT/0z = Qg +9 (T — Ty).

Here » is the thermal conductivity of the liquid, Q, is the thermal flux density through a unit surface
area of the liquid at the surface temperature T;, and g(T—Ty) is the change in thermal flux density due to a
small deviation of the temperature from T.

Changing into the dimensionless form yields at ¢ = 0 the condition

In analyzing the motion in a slag at the surface of liquid metal, we assume that the metal below has
a negligibly low viscosity but a much higher thermal conductivity than the liquid slag. The slag-metal bound-
ary may then be considered free,and its temperature constant:

w=0wldt* =0 =20 at =1, (1.5)
For. the layer of liquid metal we write analogously

w= 0w/df = 80/0f =0 at =1 (1.6)
assuming here that the conditions of adhesion prevail at the solid surface and that, when the liquid metal
has a high thermal conductivity, the thermal flux does not depend on changes in the surface temperature.

2. The Linearized Steady-State System of Equations. Since the system of equations and boundary
conditions is homogeneous, the velocity and temperature field will be determined exactly except for an ar-
bitrary factor henceforth called the amplitude.

An analytical solution of the linearized steady-state system will allow us to determine C, — the crit-
ical value of parameter C — at which a steady-state solution is possible.

An analysis of the standstill stability under small perturbations is, by the substitutions
v=viexp(—sf), IT=Iexp(—st), 8=0rexp(— st)

(vy, 13, and ¢; are independent of time), reduced to the problem of finding the eigen\}alues for the system

of equations
—svi=—VILi4 Avy, divvi=0

— 561 = PAQ; — wn
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with the appropriate boundary conditions.

The standstill is not stable if among the eigenvalues is at least one with a nonpositive real component
Re s=0. Therefore, the beginning of stability is associated with the appearance of solutions where Re
5=0.

The study is concerned with steady-state convection resulting from instability,and therefore, we must
seek the solution with s=0. The corresponding values of the temperature gradient A and of the parameter
C will be the critical ones Ax and Cx. Steady-state convection is not possgible when C < Cx.

Until now apparently, the stability and the beginning of thermocapillary convection have not been
studied thoroughly enough. The sufficiently general and convincing ideas stated by L. D. Landau in his study
of turbulence [5] can be useful, however, in hypothesizing on the character of this kind of motion.

Letting C be slightly above critical, one may assume, according to L. D, Landau, that the amplitudes
of the velocity field are proportional to the quantity £ = v{(C—C#/Cx in the linearized as well as in the non-
linear steady-state problem. The amplitude of the initial convection current is small,and a solution of the
linearized system of equations will yield the solution to the nonlinear system by the ir-ethod of small-param-
eter perturbation:

v o= ev® - g2v® . g3v® £ |
T = ell© + 210 4 6211 & . . @.1)
0 = 0@ | e L g3 L |

Here ev, e11(9, £0(? are the solution to the linearized problem.

The linearized steady-state system of equations

Av—VII=0, divv=0, A0—Pw=20 2.2)

can be reduced to a system of equations in terms of functions of w and 6:

AAw =0, A8 = Pw ©.3)

by eliminating u, v, and II with the aid of the second equation in (2.2).

According to [3], a liquid layer during steady-state convection may be assumed to break down into
cylindrical cells with axial symmetry. In eylindrical coordinates, w and ¢ will be functions of two variables
o and £, where p is the dimensionless radial coordinate (ratio of the radial dimension to the layer thick-
ness h),

System (2.3) with the corresponding boundary conditions is solved by the method of separating the
variables:

w=kJo (ap) W (L), 0 =~4kPJ,(ap)0(]). .4

Here k is the amplitude of the velocity field, J; is the zero-order Bessel function, and @ is the separa-
tion-of-variables constant.

Functions W and © satisfy the equations

(dde“ a)'w =0, (d—d;— ~@)e=W. 2.5)

The condition that the velocity field in a convection cell is bounded and that the radial velocity com-~
ponent v, vanishes at the lateral boundary of a cylindrical cell will determine the appropriate zero-order
Bessel function among the set of solutions to the Bessel equations obtained for the radial variable after
separation, and it requires that a? be real.,

Assuming that the radial component of the velocity field first becomes zero at p=0 at the cell bound-
ary, we see that obviously the dimensionless radius of the cell is equal to py = xy;/ax, where xy; is the small-
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est positive root of the first-order Bessel function J,(x) and ax is the value of parameter a which corre-
sponds to the beginning of convection, i.e., to Cy.

It is now evident that the value of ¢ in Eqgs. (2.4) is not arbitrary but such as to make ap,=xy; ;Where
xy; is the I -th positive root of the first-order Bessel function.

In this study we analyze convection at values of C only slightly above critical, and therefore, ais
assumed equal to a, .

Equations (2.5) can be solved for two sets of boundary conditions corresponding to two cases con-
sidered here: convection in a slag and convection in a metal.

At the upper boundary ¢ =0 the conditions are

d2

d
a—gW:aZCG, 'ﬁf®=BB’ W=0, 2.6)
These conditions are supplemented by additional ones:
dz
W-=d—§W=(v)=0 at t=1 2.7
for convection in a slag and
d d
W=EW=7§®=O at =1 . (2.8)
for convection in a metal.
The solution to Eqs. (2.5) with conditions (2.6) and (2.7) for convection in a slag is
W =shal + {sh®ashal — {shachachal 2.9)
2,
0 =20 (chaf + 2 shag) + —i_§ W (¢')sha(z — L) de’
. S0 0 .
(C— 8ash?a(acha -+ Bsh a) )
" (@+shacha)sha —2a¢cha
2.10)

C=8a2(1+2) for a>1,C=2(1+B) for a<<1,

The calculated curves representing C (@, B) are shown in Fig. 1 for various values of B,

The results here indicate that thermocapillary convection in a layer with a free lower surface occurs

at critical values Cx and a, which depend on parameter B. At values C <C4 there occurs no steady-state
convection,

If the liquid borders on a solid surface underneath, then the solution fo Eqgs. (2.5) with conditions (2.6)
and (2.8) is
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W =ashat + (shacha— a)shal — sh?achat (2.11)
) ¢
0 =227 [ohat + -shat) + - (W @) sha - ) ar
8

__ 4a(asbe-} Bcha)(sh2a — 2q) (2,12)
" shacha—2asha+a’che —a’sha )

C=8*(1+Bl/a) for a>1
C=48(1+B/a®) for a1,

A comparison between Fig. 1 and Fig. 2 (taken from [1]) indicates that convection begins in the first
case at values of C approximately 1.5 times lower than in the second case.

3. Amplitude of the Velocity Field. The velocity field for the linearized system of equations can be
found exactly except for the amplitude, the determination of which is tied to the existence condition for a
solution to the nonlinear system of steady-state equations, Gravitational convection has been analyzed
earlier in an analogous manner [6].

If we eliminate C from the boundary conditions, which can be done by replacing ¢ with a new function
7 = (6, then the equations of motion and of heat transfer can be written in the operator form as

L'X =F (3.1)
[Z]
A0 O —5 0 |
0 A 0 __59_ 0 u (vV)u
;l v (vV)o
L = 00A —5 0, X=| w |, F=| (v)w
a ] 2 i1 0
~% ~m w0 . Vi
00 —1 0550 ¢

Evidently, unlike in the case of gravitational convection [6], operator L' is not a self-adjoint one. If
we consider functions v, II—-¢71, and 7 instead of v, II, and 7, however, then Egs, (3.1) will yield a system
which can be expressed in operator form with a self-adjoint operator:

LX = F (3.2)
8 2
A 0 0 — _C“a‘g"
9 9
0 A 0 — o —€5'1T
- 8 a
L= 0 0 A —g —tx —t
8 8 8
~® “wm -~ w® 0
a 8 a 1
“tg—im oty ol0 ppd
u
v
X= w
m—igx
- T

The system of Egs. (3.2) can be solved by the method of series expansion in a small parameter g,
where necessarily 1/C = (1—&2)/Cy .
In this way we obtain the following system of equations:
Ly X® =0,

LyX® = FO, L, X® = FO
(3.3)
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In accordance with the Fredholm alternative, nonhomogeneous systems of equations like (3.3) have
solutions X, X©) only if the right-hand sides of these equations F{) and F®) are orthogonal to the X(0)
solution o the homogeneous system of equations

S "v(o) (VOT) v _é. 1(0)V(0)VT(0)J &Br =0
H ]

S [v(o) (vOIV) v - yO (vDP) v - EL 7O (YO . 4 vOVTO) 4+ r<0>w<0>] d3r =0 (3.4)
*

(P = 2npdpd}),’

The absence of a normal velocity component at a cell surface and the continuity equation allow a trans~
formation of (3.4) into

S [v(o) (VOV) v | .01_ OOV 4 T(o)w(o)] &r=0. 3.5)

Condition (3.5) is satisfied only when the amplitude of the velocity field in a convection cell of a liquid
has a definite value.

Indeed, the xW solution to the nonlinear system of Eqs. (3.3) will be sought in the form

VO = Nagvnp 00 =3 Bolly, W= Nrywm . . (3.6)

n, 1 n, ! n, 1

Here vy is a vector with components vyj,, 0, Wy in cylindrical coordinates:

Vo= —(an/a)Ji(ap)cosandy w,,=Jo(ep)sinnnl (8.7
(al*a + nznz)z alz }-n2n?
Tl = — ——a?——-Jo (ap)sinang, Ilyy=—nn o Jo (a,p) cos wnl

al=z1,/po (Ln=12..)
These functions satisfy the equations

Av,, =V +7, 2, divv, ;=0
A =Ry oy (Rpp = (2 +@ni) [ ap)

Here eg is the locus in the direction of the ¢ axis. With system (3.7) being complete in the 0 =p =<p,,
0 = ¢ = 1 range and with the aid of the continuity equation we can seek X1 in the form (3.6).

Insertion of (3.6) into system (3.3) and a scalar multiplication of this system by the vector whose
components are Vi, Dy, 1k will yield the following equations:

, _ _ 1
g}l W it = Vi Zz ( Gpy PO, Rnﬂ'nl) Woimi = T (3.8)

n,

3
kanl = g wmktnld r
o

i
Vg = Svmk wOywOasr, Ty = T, Srmkv(o)V‘(o)dsr
With the aid of (3.7) we can obtain
. 1L, m=n
W nknt = WaBmadrs ( Snn = { )
) 0, men

AWy =—"em (ap + 702 [ ap)? 02 J? (%)

From (3.8) we have

o= Vn! /Wnl’ Tp1 = PC, (Tnl + an) /Bnanl (3 9)
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Inserting expressions (2.4) and (3.7) into (3.9) will yield the following resulf:

Uy = b8y (204 + 0024y By, +ain (1 — 24) By (3.10)
Tni = Mgy @1 PCx [2° 20, +n2nPA) @, /°B,,, +nna® (1 — 24) ¢, 2B, +
+aa? (4, — Ag) By, + mnaya 4y B, ]
g, 2L, 1 o
Mt =~ ol @y ' Ot T 2T L =§ Ji? (agp) J1(ap) dp

9 4 428

x
= A= 5, A —i
u=T 5—§2° ANEHTES

3= 8, 4—8 8, = 71

1 1
B, = SW» E;ZV— sinwnfdl; ' B,, = § (%%—')2005 nnldl
0

0 .

1

aw ¢
By, = S d—c— 8 sin ntnfdy, B,, = g W8 cos nnld{
0 i

If series (3.6) is now inserted into the condition of solvability (3.5), then

i Tal oy (0),,,(0),
3 {[oniv® v ¥tgn €OV, Jaoy 4 (1Ot =0, (3.11)

%
n, 1

It is assumed that most significant in series (3.6) are the terms with the first nonzero values of coef-
ficients Qqqy Vii»

The integrals in (3.11) may be expressed as

¢ 2nk?L
\ v (vOV) vider= %;:3“1 Bu [(2,2 — 1) A — 20,2 An] + nBax (1 — Am)) (3.12)
2L
ST(G)V(O)VTndST = — mﬁa Cy (AnBs1 - npude1Bu)

Ay

e ‘.
ST(O)w(“)dsr = —r Cumpo?Je? (an) Buo (Lx = ﬂ)

The integrals in (3.10) and (3.12) with respect to the variable ¢ were calculated approximately, using the
first terms of the Fourier series into which the integrand functions had been expanded and extracting the
linear components for faster convergence.

The amplitude of the convection velocity field in a slag (P > 1) calculates as follows

2.3e a2+ 02 [Cyla?-+a?) (Ve
k:i—P—a:Sha* [ . s?uz* :l (3.13)
In 3 metal (P « 1) the amplitude of the convection velocity field becomes
k= --3.7eh, YV ¥5,P (3.14)

1 /b, = 4@, P (sh ay ch gy + sha, — g, — a, chay)

1/b, = 8na, P, (sha,cha, + a,cha, — ay— sha,)

- sh2a, —2a B , Cychay |, Cysha, (1 —ch2ay)
F:—-‘i—;——*(cha*—i—z:sha*—i—i)-l— hay | o

Specifically, corresponding to these results, the amplitude of velocity in a slag with B=0 is k~ £50&/
P and in a liquid metal with B =1 is k~ + 100V P.

4, Convective Diffusion. For calculating the velocity at which gas escapes from a liquid layer, one
must solve the equation of convective diffusion, which for the steady-state case in dimensionless variablesis

dc dc i 1 9 dc v
Py (Upa—p"-i—w-gg) =t o %P (PD"-—D‘)e (4.1)
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Here Pp is the Prandtl diffusion number and ¢ is the concentration of gas in the liquid.

The axial velocity component w is determined from Egs. (2.4), (2.9), (2.11),and according to the con-
tinuity equation, the radial velocity component is

?p=_(k/a*)J1(a*p)dW/dC. 4.2)

Since usually for liquids Ppy > 1, the condition kPp>1 (k>0) can be satisfied in a convection cell
even at low amplitudes of velocity.

In this case one may apply the V. G. Levich theory of convective diffusion [4], according to which the
concentration distribution of a substance in a volume is characterized by the presence of a thin diffusion
layer resulting in a concentration change only within a thin layer near the surface ¢ = 0, where the veloeity
field is described by the first terms of a power series in &:

w = kotuJ o (@ 0) L, Vo = —k(t;/ ag) Iy (2, 0) (4.3)

(tz=ay—sha,chay,, a2=0,2—sh?a)) .,
Subscripts i =1, 2 correspond to convection in the slag and in the metal respectively.
The problem is now reduced to finding the solution to the equation

i [ 2 9%
— kP [ 1 (@ )5 — To@r0) 57| =3 (4.4)

with boundary conditions defining the concentration c¢ = ¢, in the melt volume ({ —=) and in the vicinity of
a confluence point (if w <0 at p = 0) or line (if w>0 at p = 0) and ¢ = ¢; at the boundary surface (¢= 0) except
the confluence point or line.

The Mises transform [4] signifies a transition from variables p, { to new variables ¥, p, where

K i 10 w 1 09
‘|7=';p§‘11(a*9) ('k_za'i=’"T_a'f'Ei‘=T%). (4.5)

Then Eq. (4.4) becomes the equation of heat conduction
de _ dr=— e p)d
o = o RaPpa, THeafldR), (4.6)

If w>0 (k< 0), then the confluence line of the current corresponds o a0 = x3;,and therefore, function
7 is conveniently chosen in the form

ko Ppaytt, = (21,35 (T11) — 34207, (a4 0)] “.7)
If w<0 (k>0), then the confluence point obviously corresponds to p =0, and therefore, one must choose
- kaiPpa*zt_ = pa (a4 ). " (4.8)
In both cases the boundary conditions are identical:

c=c§ for P=0, v=£0 (4.9)

¢-—Ce | fOr P— 0o

c—>c, for  T—0, $p==0.

Equation (4.6) with boundary conditions (4.9) admits a self-simulating solution:

x
c—cp P ___2___ i
T.o_—% = erf YL (erf 2= (Sexp (13 dt) . (4.10)

EY
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In this way the diffusion current density at the interphase boundary is

: D (b D (e, — o) pJ1{a4 p)
J=—5 (35)?:# T T Ve (4.11)

The total current from the surface area per one cell is

amh2 2 — _
7 S jadz = — a?l (¢ — cq)' V aDvJTy (zy) | i | - (4.12)

The mean current density from a unit area of the melt surface is

Ioz—;‘?—(cm-—co) v (ﬁ:

\

zuh VD
4 VT3 (zu) | ko; [ - (4.13)

In specific cases the thickness of the diffusion boundary layer is

0=01(D/yxe):, P>1, B=0
8 =0.1 (D /v3®), P11, B=1.
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